Chapter

Archimedes’ Determination

of Circular Area
(ca. 225 B.C.)

The Life of Archimedes

Two to three generations separated Euclid from the next great mathe-
matician on our agenda, the incomparable Archimedes of Syracuse
(287-212 B.c.). By the end of his brilliant career, Archimedes had
pushed mathematics well beyond the frontiers of Euclid’s day. Indeed,
the mathematical world would not see his like again for almost 2000
years.

We are fortunate to have a bit of information about Archimedes’ life,
although, as with any details coming to us over so many generations, its
literal validity can often be challenged. A number of his mathematical
works, often prefaced by his own commentaries, have also survived.
Taken together, these resources give us a picture of a much revered,
somewhat eccentric genius who dominated the mathematical landscape
of the classical world.

Archimedes was born at Syracuse on the island of Sicily. His father is
thought to have been an astronomer, and as a young boy, Archimedes
developed a life-long interest in the study of the heavens. In his youth,
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Archimedes also spent some time in Egypt, where he appears to have
studied at the great Library of Alexandria. This, of course, had been
Euclid’s base of operations, and Archimedes would naturally have been
trained in the Euclidean tradition, a fact readily apparent in his own
mathematical writings.

During his time in the Nile Valley, Archimedes is said to have
invented the so-called “Archimedean screw,” a device for raising water
from a low level to a higher one. Interestingly, this invention remains in
use to this day. Its creation testifies to the dual nature of Archimedes’
genius: he could concern himself with practical, down-to-earth matters,
or could delve into the most abstract, ethereal realms. In spite of Alex-
andria’s obvious appeal to one of his scholarly talents, Archimedes chose
to return to his native Syracuse and there, as far as can be determined,
spent the rest of his days. Although isolated in Syracuse, he maintained
a wide correspondence throughout the Greek world, and particularly
with scholars at Alexandria. It is through such correspondence that much
Archimedean material has survived.

His awesome mathematical talent was augmented by an ability to
devote himself single-mindedly to any problem at hand in extraordinary
periods of intense, focused concentration. At such times, the more mun-
dane concerns of life were simply ignored. We learn from Plutarch that
Archimedes would

... forget his food and neglect his person, to that degree that when he was
occasionally carried by absolute violence to bathe or have his body anointed,
he used to trace geometrical figures in the ashes of the fire, and diagrams in
the oil on his body, being in a state of entire preoccupation, and, in the
truest sense, divine possession with his love and delight in science.

This passage portrays the stereotypically absent-minded mathemati-
cian, not to mention one to whom cleanliness was next to irrelevant. Of
course, the most famous ‘“‘absent-minded” story concerns the crown of
King Hieron of Syracuse. The King, suspicious that his goldsmith had
substituted some lesser alloy for the crown’s gold, asked Archimedes to
determine its true composition. As the story goes, Archimedes wrestled
with the problem until one day (during what must have been one of his
rare baths) he hit upon the solution. Jumping from the bath, he ran
through the streets of Syracuse shouting “Eureka! Eureka!” Unfortu-
nately, so absorbed was he in his wonderful discovery that he forgot to
don his toga. What the townspeople thought at seeing their fellow citi-
zen running stark naked in their midst is impossible to say.

This tale may be fictitious, but Archimedes’ discovery of the funda-
mental principles of hydrostatics is pure fact. He left us a treatise titled
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On Floating Bodies developing his ideas in this area. Additionally, he
advanced the science of optics and did pioneering work in mechanics,
as is evident not only in his water pump but in his wonderful understand-
ing of the workings of levers, pulleys, and compound pulleys. Plutarch
included the story of a skeptical King Hieron doubting the power of
these simple mechanical devices. The King asked for a practical dem-
onstration, and Archimedes obliged in dramatic fashion. He selected
one of the King’s largest ships

... which could not be drawn out of the dock without great labourand many
men; and, loading her with many passengers and a full freight, sitting him-
self the while far off, with no great endeavour, but only holding the head of
the pulley in his hand and drawing the cords by degrees, he drew the ship
in a straight line, as smoothly and evenly as if she had been in the sea.

Needless to say, the King was impressed. Perhaps he sensed in this
gifted scientist a valuable resource in the event that such engineering
talents should be needed for more pressing matters. And indeed they
were, when Rome, under the generalship of Marcellus, attacked Syra-
cuse in 212 B.c. In the face of the Roman threat, Archimedes rose to the
defense of his homeland by designing an array of weapons of great effec-
tiveness. In the process, he became what can only be called a one-man
military-industrial complex.

In what follows, we continue to quote liberally from Plutarch’s Life
of Marcellus, written by the great Roman biographer almost three cen-
turies after the fact. While it was Marcellus about whom Plutarch was
ostensibly writing, his admiration for Archimedes was quite evident.
These writings provide us with an intriguing—and certainly a very col-
orful—account of Archimedes in action.

“Marcellus moved with his whole army to Syracuse,” Plutarch wrote,
“and encamping near the wall, sent ambassadors into the city.” When
the Syracusans refused to surrender, Marcellus opened his attack on the
city walls, both on the land side with his troops and on the ocean side
with 60 heavily armed galleys. Marcellus was counting on “. . . the abun-
dance and magnificence of his preparations, and on his own previous
glory,” but he would prove no match for Archimedes and his diabolical
war machines.

According to Plutarch, the Roman legions marched to the city walls,
believing themselves to be invincible.

But when Archimedes began to ply his engines, he at once shot against the
land forces all sorts of missile weapons, and immense masses of stone that
.came down with incredible noise and violence; against which no man could
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stand; for they knocked down those upon whom they fell in heaps, breaking
all their ranks and files.

The Roman naval forces fared no better, for

... huge poles thrust out from the walls over the ships sunk some by the
great weights which they let down from on high upon them; others they
lifted up into the air by an iron hand or beak . . . and, when they had drawn
them up by the prow, and set them on end upon the poop, they plunged
them to the bottom of the sea; or else the ships, drawn by engines within,
and whirled about, were dashed against steep rocks that stood jutting out
under the walls, with great destruction of the soldiers that were aboard
them.

Such destruction, related Plutarch, was “‘a dreadful thing to behold,”
and one is inclined to agree. Under the circumstances, Marcellus
thought it prudent to retreat. He withdrew both land and naval forces to
regroup. Holding a council of war, the Romans decided upon a night
assault, in the expectation that Archimedes’ devilish weapons would be
useless if the attackers slipped too close to the walls under the cover of
darkness. Again, the Romans had an unpleasant surprise. The diligent
Archimedes had arranged his devices for just such an eventuality, and no
sooner had the Romans crept up close upon the fortifications than
‘“‘stones came tumbling down perpendicularly upon their heads, and, as
it were, the whole wall shot out arrows at them.” In response, the terri-
fied Romans again retreated, only to come under attack from Archime-
des’ longer-range weapons, an attack that “inflicted a great slaughter
among them.” By this time, the vaunted Roman legions, “seeing that
indefinite mischief overwhelmed them from no visible means, began to
think they were fighting with the gods.”

It is perhaps an understatement to say that Marcellus had a serious
morale problem. He demanded of his shaken troops a renewed courage
to continue the assault, but the previously invincible Romans wanted no
more of it. On the contrary, the soldiers “if they did but see a little rope
or a piece of wood from the wall, instantly crying out, that there it was
again, Archimedes was about to let fly some engine at them, they turned
their backs and fled.” Knowing that discretion is the better part of valor,
Marcellus chose to abandon the direct assault.

Instead, trying to starve the trapped Syracusans into surrender, the
Romans began a long siege of the city. Time passed, with no change in
the disposition of forces. Then, during a feast to Diana, the city inhabi-
tants, “‘given up entirely to wine and sport,” became careless about
guarding a section of the wall, and the opportunistic Romans saw their




88 ® JOURNEY THROUGH GENIUS

chance. Their armies broke through the lightly guarded section and
poured into the city in a vicious and destructive mood. Marcellus, sur-
veying the beautiful town, is said to have wept in anticipation of the
havoc that his men were sure to wreak. Indeed, history records that the
Romans treated Syracuse no less harshly than they would treat Carthage
some 66 years later.

But it was the death of Archimedes that brought Marcellus his great-
est sorrow, for he had come to respect his gifted antagonist. According
to Plutarch,

... as fate would have it, intent upon working out some problem by a dia-
gram, and having fixed his mind alike and his eyes upon the subject of his
speculation, [Archimedes] never noticed the incursion of the Romans, nor
that the city was taken. In this transport of study and contemplation, a sol-
dier, unexpectedly coming up to him, commanded him to follow to Mar-
cellus; which he declining to do before he had worked out his problem to
a demonstration, the soldier, enraged, drew his sword and ran him through.

Thus ended the life of Archimedes. He died, as he had lived, lost in
thought about his beloved mathematics. We can regard him either as a
martyr to his research or as a victim of his own preoccupied mind. In
any case, mathematicians may come and mathematicians may go, but no
other has had an end quite like this.

For all of Archimedes’ great weapons, for all of his practical inven-
tions, his true love was pure mathematics. His levers and pulleys and
catapults were mere trifles compared with the beautiful theorems he dis-
covered. Again, we quote Plutarch:

Archimedes possessed so high a spirit, so profound a soul, and such treas-
ures of scientific knowledge, that though these inventions had now obtained
him the renown of more than human sagacity, he yet would not deign to
leave behind him any commentary or writing on such subjects; but, repu-
diating as sordid and ignoble the whole trade of engineering, and every sort
of art that lends itself to mere use and profit, he placed his whole affection
and ambition in those purer speculations where there can be no reference
to the vulgar needs of life.

It was his mathematics that would be his greatest legacy. In this
arena, Archimedes stands unchallenged as the greatest mathematician of
antiquity. His results, which survive in a dozen books and fragments, are
of the highest quality and show a logical sophistication and polish that
is truly astounding. Not surprisingly, he was very familiar with Euclid
and proved to be a master of Eudoxus’ method of exhaustion; to use
Newton'’s charming phrase, Archimedes surelystood on the shoulders of
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giants. But past influences, great as they were, cannot adequately explain
the amazing advances that Archimedes would bring to the discipline of
mathematics.

Great Theorem: The Area of the Circle

Around 225 B.c., Archimedes produced a short treatise titled Measure-
ment of a Circle, the first proposition of which gave a penetrating anal-
ysis of circular area. Before addressing this classic work, however, we
first need to examine what was known about circular areas when Archi-
medes arrived upon the scene.

Geometers of the time would have known that, regardless of the cir-
cle in question, the ratio of the circumference of a circle to its diameter
is always the same. In modern terminology, we would say that

where C is the circumference and D is the diameter of the circles in
Figure 4.1. Put another way, the ratio of a circle’s circumference to its
diameter is constant, and modern mathematicians define = to be this
ratio. (Note that the Greeks did not use the symbol in this context.)
Thus, the formula

= 7 or its equivalent =D

Sla

Circumference = C;

Circumference = C;

FIGURE 4.1
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is nothing more than the definition of the constant = as it arises in the
comparison of two lengths—a circle’s circumference and its diameter.

But what about circular areas? As we have seen, Proposition XII1.2 of
the Elements established that two circular areas are to each other as the
squares on their diameters, and thus the ratio of circular area to the
square of the diameter is constant. In modern terms, Euclid had proved
that there is some constant & such that

A .
= k or equivalently A = kD?

All of this was fine as far as it went. But how do these constants relate to
one another? That is, can one find a simple connection between the
“one-dimensional” constant = (used in relating circumference to diam-
eter) and the “two-dimensional” constant k& (used in relating area to
diameter)? Apparently Euclid had found no such connection.

But in his short yet elegant treatise Measurement of a Circle, Archi-
medes proved what amounts to the modern formula for circular area
involving . In doing this, he made the critical link between circumfer-
ence (and hence w) and circular area. His proof required two fairly direct
preliminary results plus a rather sophisticated logical strategy called
double reductio ad absurdum (reduction to absurdity).

We shall examine these preliminaries first. One concerned the area
of a regular polygon with center O, perimeter Q, and apothem b, where
the apothem is the length of the line drawn from the polygon’s center
perpendicular to any of the sides.

THEOREM The area of the regular polygon is %5Q.

PROOF Suppose the polygon in Figure 4.2 has 7 sides, each of length b.
Draw lines from O to the vertices, thereby breaking it up into a collec-
tion of # congruent triangles, each with height b (the apothem) and base
b. Since each triangle has area %bb,

Area (regular polygon)
= Y¥bb + %bb + ... + %bb, where the sum contains » terms
=4%b(b+ b+ ...+ b) = %bQ

since (b + b+ ... + b) is the perimeter.
Q.E.D.
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Perimeter = Q

FIGURE 4.2

That was quick enough. Archimedes’ other preliminary was also well
known in his day, and seems quite self-evident. It says that if we are
given a circle, we can inscribe within it a square; Euclid himself gave
this construction in Proposition IV.6. The square’s area, of course, is less
than that of the circle in which it was inscribed. By bisecting each side
of the square, we can locate the vertices of a regular octagon inscribed
within the circle. Of course, the octagon more nearly approximates the
circle’s area than the square did. If we again bisected to get a regular 16-
gon, it would be closer to the circle in area than the octagon was.

The process can be continued indefinitely. This is, in fact, the
essence of Eudoxus’ famous method of exhaustion alluded to earlier.
Clearly the area of an inscribed polygon never equals that of the circle;
there will always be an excess of circle over inscribed polygon regard-
less of the number of sides of the latter. But—and this was the key to
the method of exhaustion—if we have any preassigned area, no matter
how small, we can construct an inscribed regular polygon for which the
difference between the circle’s area and the polygon’s is less than this
preassigned amount. For instance, if we were given a preassigned area
of %w of a square inch, we could come up with a regular inscribed poly-
gon for which
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Area (circle) — Area (polygon) < %w square inch

That such a polygon might have hundreds or thousands of sides is imma-
terial; the crucial fact is that it exists.

An analogous rule holds for circumscribed polygons. We can sum-
marize both by saying that, for any given circle, we can find polygons—
inscribed or circumscribed—whose areas are as close to the circle’s area
as we want. It is the “close as we want” part of this that held the key to
Archimedes’ success.

These, then, were his two preliminary propositions. Now a word is
needed about the logical ploy he adopted for showing that one area
equals another. In some ways this strategy is more sophisticated, or at
least more devious, than any we have yet seen. Recall, for instance, how
Euclid proved that the square on the hypotenuse equaled the sum of the
squares on the legs: he attacked the matter directly, showing that the
areas in question were the same. His proof, although extremely clever,
was a frontal assault.

But when Archimedes approached the far more complicated circular
area, he employed an indirect attack. He realized that, for any two quan-
tities A and B, one and only one of the following cases holds: 4 < Bor
A > Bor A = B. Wanting to prove that A = B, Archimedes would first
make the assumption that A < B and from this derive a logical contra-
diction, thereby eliminating the case as a possibility. Next, he would
suppose that A > B, which again led him to a contradiction. With both
of these options eliminated, there remained but one alternative, namely,
that 4 and B are equal.

This was his wonderful, indirect strategy—a ‘‘double reductio ad
absurdum” since it reduced two of the three cases to a contradiction.
While this may initially seem a bit roundabout, a little reflection shows
it to be quite reasonable; eliminate two of the three possible cases and
one is forced to conclude that the third is valid. Certainly no one used
double reductio ad absurdum more deftly than Archimedes.

With these preliminaries behind us, we can now watch a master at
work in the first proposition from Measurement of a Circle:

PROPOSITION 1 The area of any circle is equal to a right-angled triangle
in which one of the sides about the right angle is equal to the radius,
and the other to the circumference, of the circle.

PROOF Archimedes began with two figures (Figure 4.3): a circle having
center O, radius r, and circumference C; and a right triangle having base
of length C and height of length r. We denote by A the area of the circle
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Circumference = C
Area= A

FIGURE 4.3

and by T'the area of the triangle. While the former is the object of Archi-
medes’ proof, it is clear that the triangle’s area is just T = %rC.

The proposition claimed simply that A = T. To establish this by a
double reductio ad absurdum proof, Archimedes needed to consider,
and eliminate, the other two cases.

CASE1 Suppose A> T.

This asserts that the circular area exceeds that of the triangle by some
amount. In other words, the excess A — T is some positive quantity.
Archimedes knew that, by inscribing a square within his circle and
repeatedly bisecting its sides, he could arrive at a regular polygon
inscribed within the circle whose area differs from the area of the circle
by less than this positive amount A — T. That is,

A — Area (inscribed polygon) < A— T

Adding the quantity “‘Area (inscribed polygon) + T — A" to both sides
of this inequality yields

T < Area (inscribed polygon)

But this is an inscribed polygon (Figure 4.4). Thus its perimeter Q is
less than the circle’s circumference C, and its apothem b s certainly less
than the circle’s radius . We conclude that

Area (inscribed polygon) = ¥hQ < %rC =T

Here Archimedes had reached the desired contradiction, for he had
found both that 7' << Area (inscribed polygon) and that Area (inscribed
polygon) < T. There is no logical recourse other than to conclude that
Case 1 is impossible; the circle’s area cannot be more than the triangle’s.

This left him with the second case.
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FIGURE 4.4

CASE2 Suppose A< T.

This time Archimedes assumed that the circle’s area fell short of the
triangle’s, so that 7'— A represented the excess area of the triangle over
the circle. We know that we can circumscribe about the circle a regular

polygon whose area exceeds the circle’s area by less than this amount T
— A. In other words,

Area (circumscribed polygon) — A< T— A4
If we simply add A to both sides of the inequality, we conclude that
Area (circumscribed polygon) < T

But the circumscribed polygon (Figure 4.5) has its apothem b equal to
the circle’s radius r, while the polygon’s perimeter Q obviously exceeds
the circle’s circumference C. Thus,

Area (circumscribed polygon) = %¥bQ > %rC =T

Again this is a contradiction, since the circumscribed polygon cannot
be both less than and greater than the triangle in area. Archimedes con-
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FIGURE 4.5

cluded that Case 2 was likewise impossible; the circle’s area cannot be
less than the triangle’s.

As a consequence, Archimedes could write: “Since then the area of
the circle is neither greater nor less than [the area of the triangle], it is
equal to it.”

Q.E.D.

This was his proof, a little gem from the hand of an indisputably great
mathematician. It strikes some people as odd that Archimedes proved
the circle’s area must equal that of the triangle by showing that it could
be neither greater nor less. For those who find his argument a bit too
indirect for their taste, a paraphrase of Hamlets Polonius is offered:
“though this be madness, yet there is method of exhaustion in’t.” One
is tempted to wonder how something this short and simple could have
been overlooked by Hippocrates or Eudoxus or Euclid. But simplicity is
most easily perceived in hindsight. In this regard, we again turn to Plu-
tarch’s characterization of Archimedes’ mathematics:

It is not possible to find in all geometry more difficult and intricate ques-
tions, or more simple and lucid explanations. Some ascribe this to his nat-
ural genius; while others think that incredible effort and toil produced these,
to all appearances, easy and unlaboured results. No amount of investigation
of yours would succeed in attaining the proof, and yet, once séen, you
immediately believe you would have discovered it; by so smooth and so
rapid a path he leads you to the conclusion required.
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Given that Archimedes had equated the area of the circle with that of
atriangle, did he therefore accomplish the long-sought quadrature of the
circle that we examined in Chapter 1? The answer of course is “No,” for
we recall that a successful quadrature requires us to construct the recti-
linear figure of equal area. Archimedes’ proof did not, nor did it claim
to, give any inkling as to how to construct the triangle in question. There
is, of course, no difficulty in constructing the leg of the triangle equaling
the circle’s radius; the snag occurs when one tries to construct the other
leg equal to the triangle’s circumference. Since C = wD, constructing
the circumference amounts to constructing =. As we have seen, no such
construction is possible. Archimedes’ proof must not be construed as his
attempt to square the circle; it was no such thing.

All of this notwithstanding, the reader may yet fail to recognize the
familiar formula for the area of a circle in Archimedes’ theorem. After
all, what he proved was that the area of a circle equaled that of a certain
triangle. As we shall see, this was a typical Archimedean device—to
relate the area of an unknown figure with that of a simpler, known one.
But more was going on than just this. For the triangle in question had as
its base the circle’s circumference, and this had two crucial implications.
First, unlike Euclid, Archimedes had related a circle’s area not to that of
another circle (basically a “relativistic”” approach) but to its own circum-
ference and radius, as reflected in the equivalent triangle. Then, by prov-
ing that A = T = %rC, Archimedes had provided the link between the
one-dimensional concept of circumference and the two-dimensional
concept of area. Remembering that C = wD = 2xr, we rephrase his the-
orem as

A= %rC = %rQxr) = o

and here emerges one of geometry’s most familiar and important
formulas.

It is also worth noting that Archimedes’ bold proposition easily
implied Euclid’s relatively tame result that the areas of two circles are in
the same ratio as the squares upon their diameters. That is, if we let one
circle have area A, and diameter D, and a second circle have area A, and
diameter D,, then Archimedes proved

A =7 = n(D/2)* = #D%/4 and A4, = w7t = 7(D,/2)* = ©D%/4

Hence
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which is Euclid’s theorem in a nutshell. So, this Archimedean proposi-
tion had enough power to imply the Euclidean result as a trivial corol-
lary. Such is the mark of a genuine mathematical advance.

If we look back at the previous discussion, we can now determine
the value of the constant k& in the “Euclidean” expression A = kD*. For,
with Archimedes’ discovery at hand, we know that

nP = A= kD’ = k(2r)’ = 4kP

Hence, 4k = =, and so & = w/4. In other words, Euclid’s “two-dimen-
sional” area constant is just a quarter of , the “one-dimensional” cir-
cumference constant. Thus, his proposition brought the welcome news
that we need not calculate two different constants. If we can just deter-
mine the value of = from the circumference problem, it would also serve
in the formula for circular area.

This latter observation was not lost on Archimedes. In fact, as the
third proposition of Measurement of a Circle, he derived just such a
value.

PROPOSITION 3 The ratio of the circumference of any circle to its diam-
eter is less than 3% but greater than 3'%.

In modern notation, this says: 3'% < = < 3%. With these fractions
converted to their decimal equivalents, Archimedes’ result becomes
3.140845 ... w < 3.142857 .. .; hence, the constant = has been nailed
down, to two decimal place accuracy, as 3.14.

That Archimedes came up with this estimate is another sign of his
powers. His plan of attack was again to use his ever-helpful inscribed
and circumscribed regular polygons, except this time, instead of tracking
down their areas, he was concentrating on their perimeters. He began
with a regular hexagon inscribed in a circle (Figure 4.6). He knew well
that each side of the hexagon equaled the circle’s radius, whose length
we can call ». Thus,

_ circumference of circle _ perimeter of hexagon  6r
diameter of circle diameter of circle 2r

=3

Admittedly, this was a very crude estimate for «, but Archimedes had
just begun. He next doubled the number of sides of his inscribed poly-
gon, to get a regular dodecagon whose perimeter he had to calculate.
This is where he leaves modern mathematicians shaking their heads in
wonder, for determining the dodecagon’s perimeter required getting a
numerical value for the square root of three. With our calculators and
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FIGURE 4.6

computers, this strikes us as no real obstacle, but in Archimedes’ time,
not only were these devices unthinkable, but there was not even a good
number system to facilitate such computations. Yet he emerged with the
estimate

265 1351
153 V3 780

which is impressively close.

From there, Archimedes continued, bisecting again to get a regular
24-gon, then a regular 48-gon, and finally a regular 96-gon. At each stage,
he needed to approximate sophisticated square roots, yet he never fal-
tered. When he reached the 96-gon, his estimate was

circumference of circle
7|' =
diameter of circle
> perimeter of regular 96-gon > 6336
diameter of circle 2017%

> 3%,

As if this were not enough, Archimedes then turned around and
made similar estimates for regular circumscribed 12-gons, 24-gons, 48-
gons, and 96-gons, leading him to his upper bound for x of 3%. Such
calculations, in the face of an absolutely terrible numeral system and
without easy procedures for estimating the square roots he needed, pro-
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vide sure evidence of his awesome powers. These computations were
the arithmetical counterpart of running the high-hurdles wearing a ball
and chain. Yet by marshaling his enormous intellect and perseverance,
he succeeded in giving the first scientific estimate of the critical constant
«. As indicated in the Epilogue to this chapter, the quest for highly accu-
rate estimates of this number has occupied mathematicians ever since.

As it has come down to us, Measurement of a Circle contains only
three propositions and covers only a few pages of text. Moreover, the
second proposition is out of place and unsatisfactory, undoubtedly the
result of bad copying, bad editing, or bad translating years, if not cen-
turies, after Archimedes. On the surface, then, it seems unlikely that
such a short work would carry the impact that it does. But considering
that in its first proposition, Archimedes proved the famous formula for
the area of a circle, and in its last, he gave a remarkable estimate for the
number =, there is really no doubt why this little treatise had been held
in such high regard by generations of mathematicians. It is not the quan-
tity of pages but the quality of the mathematics, and by this criterion
Measurement of a Circle stands as a genuine classic.

Archimedes’ Masterpiece: On the Sphere and the Cylinder

The results just discussed constitute but a fraction of the mathematical
legacy of Archimedes. He also wrote about the geometry of spirals and
about conoids and spheroids, and he provided a remarkable means of
finding the area under a parabola by summing a certain infinite geomet-
ric series. This latter topic—finding areas under curves—is now treated
in calculus courses, another indication (if one were needed) of how
utterly far ahead of his time Archimedes was.

But for all of these accomplishments, his undisputed masterpiece
was an extensive, two-volume work titled On the Sphere and the Cylin-
der. Here, with almost superhuman cleverness, he determined volumes
and surface areas of spheres and related bodies, thereby achieving for
three-dimensional solids what Measurement of a Circle had done for
two-dimensional figures. It was a stunning triumph, one that Archimedes
himself seems to have regarded as the apex of his career.

We should first recall what the Greeks knew about the surface areas
and volumes of three-dimensional bodies. As noted in the previous
chapter, Euclid had proved that the volumes of two spheres are to each
other as the cubes of their diameters; in other words, there exists a ‘“‘vol-
ume constant” m so that

Volume (sphere) = mD?
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This was the Euclidean treatment of spherical volume. As to the sur-
face area of a sphere, Euclid was utterly silent. Here again, a successful
assault on the problem awaited Archimedes’ On the Sphere and the
Cylinder.

This two-volume work had a familiar ring to it, insofar as it began
with a list of definitions and assumptions from which he derived ever
more sophisticated theorems. In short, it was cast in the Euclidean mold.
Its first proposition was the innocuous: “If a polygon be circumscribed
about a circle, the perimeter of the circumscribed polygon is greater
than the circumference of the circle.” However, Archimedes quickly
moved in more sophisticated directions. Throughout, he was (at least to
modern tastes) hampered by the lack of a concise algebraic notation.
Unable to express his volumes and surface areas by simple formulas, he
had to rely on statements such as:

PROPOSITION 13 The surface of any right circular cylinder excluding the
bases is equal to a circle whose radius is a mean proportional between
the side of the cylinder and the diameter of the base.

At first glance, this looks quite mysterious and unfamiliar, but it is in the
phrasing, not the content, that the unfamiliarity lies. Without the benefit
of algebra, Archimedes had to express his desired area—in this case that
of a lateral surface of a right circular cylinder—as being equal to the
area of a known figure—in this case, a circle (Figure 4.7). But which
circle? Obviously Archimedes had to specify his equivalent circle, and
that is where the statement about mean proportionals came in.
In modern terminology, Archimedes was claiming that

Lateral surface (cylinder of radius r and height b)
= Area (circle of radius x)

where b/x = x/2r. From this it follows quickly that x* = 2rh, and so we
get the well-known formula:

Lateral surface (cylinder) = Area (circle) = n2? = 2wrb

Archimedes proceeded through a string of like-sounding proposi-
tions as he approached his first major objective, the surface area of the
sphere. Space does not allow us to follow him in his reasoning, but we
can acknowledge his remarkable ingenuity. In light of our earlier exam-
ination of his mathematics, the reader should not be surprised to learn
that Archimedes again used the method of exhaustion. That is, he
“exhausted” the sphere by approximating it from within and without by




ARCHIMEDES’ DETERMINATION OF CIRCULAR AREA ® 101

Circle

Cylinder

FIGURE 4.7

cones and the frusta of cones, all of whose surface areas he had previ-
ously determined. When the dust had settled, he had proved the
remarkable

PROPOSITION 33 The surface of any sphere is equal to four times the
greatest circle in it.

Archimedes completed the proof with his favorite logical tactic of
double reductio ad absurdum; that is, he proved it impossible for the
spherical surface to be more than four times the area of its greatest circle
and also proved it impossible for it to be Jess than four times the area of
its greatest circle. If we observe that the area of the ‘“‘greatest circle” of
the sphere—that is, the circle through the sphere’s “‘equator’”’—is just
7%, then we can translate Archimedes’ formulation of this result—‘the
surface of the sphere is four times the area of its greatest circle” —into
the modern-day formula

Surface area (sphere) = 477
This is a very sophisticated piece of mathematics. The deftness with

which Archimedes handled his concepts, the insights that he brought to
bear, seem to anticipate the ideas of modern integral calculus. It is
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readily apparent why Archimedes is regarded as the greatest mathema-
tician of ancient times.

But there is one other fact about this result that warrants a comment,
namely, its utter strangeness. There is nothing intuitive about the sub-
stantive fact that the surface of a sphere is exactly four times as large as
the area of its greatest cross section. Why could it not have been 4.01
times as great? What is so magical about this number “‘four” to guarantee
that if one were to paint the curving surface of a sphere, it would take
precisely four times as much paint as it would to paint the great circle
through the center?

Archimedes himself addressed this peculiar, intrinsic property of the
sphere in his introduction to On the Sphere and the Cylinder, which he
wrote for a certain ‘“Dositheus,” presumably a mathematician at Alex-
andria to whom Archimedes had sent the treatise. Archimedes noted that
“... certain theorems not hitherto demonstrated have occurred to me,
and I have worked out the proofs of them.” First among those he men-
tioned was *“. . . that the surface of any sphere is four times its greatest
circle,” and he went on to observe that such properties were

. all along naturally inherent in the figures referred to, but remained
unknown to those who were before my time engaged in the study of geom-
etry. Having, however, now discovered that the properties are true . .., I
cannot feel any hesitation in setting them side by side both with my former
investigations and with those of the theorems of Eudoxus on solids which
are held to be most irrefragably established . . .

The comment provides an interesting glimpse of Archimedes’ assess-
ment of his work and its place in the development of mathematics. He
did not hesitate to include himself alongside the great Eudoxus, for he
surely was well aware of the extraordinary nature and quality of his own
discoveries. But he also went out of his way to stress that he had not
invented or created the fact that S = 4w%. Rather, he had been fortunate
enough to discoveran intrinsic property of spheres, one that had existed
since time immemorial even though it had been previously unknown to
geometers. To Archimedes, mathematical relationships existed indepen-
dent of the poor efforts of humans to decipher them. He himself had just
been the individual fortunate enough to glimpse these eternal truths.

If On the Sphere and the Cylinder had contained nothing but the
previous theorem, it would have stood as a classic for all time. But he
immediately turned his gaze toward spherical volume. After another
intricate double reductio ad absurdum argument, Archimedes suc-
ceeded in establishing
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PROPOSITION 34 Any sphere is equal to four times the cone which has
its base equal to the greatest circle in the sphere and its height equal to
the radius of the sphere.

Note that, again, Archimedes has expressed the volume of the sphere
not as a simple algebraic formula but in terms of the volume of a simpler
solid, in this case, a cone (Figure 4.8). With just a bit of effort we can
convert his verbal statement into its modern equivalent.

That is, let r be the radius of the sphere. Then the ‘“‘cone which has
its base equal to the greatest circle in the sphere and its height equal to
the radius of the sphere” is such that

Volume (cone) = %nPb = %xVr = %7

But Archimedes’ Proposition 34 had proved that the volume of the
sphere is four times as great as the volume of one of these cones, and
this yields the famous formula

Volume (sphere) = 4 Volume (cone) = %xr

Among its benefits, this result clarifies the link between = and the
“volume constant” m that arose from Euclid’s Proposition X11.18. Refer-
ring to our discussion above, we immediately see that

4w = Volume (sphere) = mD> = m(2r)® = 8m»?

FIGURE 4.8
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and a little algebra reveals that m = =/6. In this fashion, the pre-Archi-
medean mystery regarding circumferences, circular areas, and spherical
volumes was resolved. No longer were three different constants needed
to address these three different matters; all three rested upon knowledge
of w. Archimedes had exhibited a stunning unity among them.

Immediately upon completing his proofs of Propositions 33 and 34,
Archimedes restated his results in a particularly intriguing way. He con-
sidered a cylinder circumscribed about the sphere, as shown in Figure
4.9. He then asserted that the cylinder is half again as large as the sphere
in both surface area and volume! In a certain sense, this was the climax
of his whole work. It took his two great results and presented them in a
simple fashion, expressing the complicated spherical surface and vol-
ume in terms of the correspondingly simpler surface and volume of a
related cylinder. This section will conclude with a verification of Archi-
medes’ striking claim.

First, notice that a cylinder circumscribed about a sphere of radius r
itself has radius » and height » = 2r. The cylinder’s overall surface area
is the sum of the lateral surface (as in Proposition 13), as well as the
circular areas of the top and bottom. Thus,

total cylindrical surface = 27xrb + ## + =7
= 27r(2r) + 2x# = 67
= %(4n7)
= %(spherical surface)

which is precisely what Archimedes meant by saying that the cylinder
was “half again” the sphere in surface area.

FIGURE 4.9
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And what about the corresponding volumes? For a general cylinder,
we have V = x72h, which in this case becomes V = n7(2r) = 2=
Thus,

Cylindrical volume = 277
= %(%wr) = %(spherical volume)

so that the cylinder was half again the sphere in volume.

Thus, in one concise and remarkable statement, Archimedes had
linked the sphere and the cylinder. It was this link that surely accounted
for the title of the treatise we are examining. That Archimedes took par-
ticular pride in this discovery was indicated by Plutarch’s reference to
Archimedes’ choice of epitaph:

His discoveries were numerous and admirable; but he is said to have
requested his friends and relations that, when he was dead, they would
place over his tomb a sphere contained in a cylinder, inscribing it with the
ratio which the containing solid bears to the contained [ i.e., the ratio 3:2].

Interestingly, Cicero reported in his Tusculan Disputations that
when in Syracuse he indeed came upon Archimedes’ tomb. Admittedly,
“a jumble of brambles and bushes’” had grown up in the area, concealing
everything. But Cicero knew what he was looking for and was under-
standably excited when he recognized ‘‘a small column that emerged a
little from the bushes: it was surmounted by a sphere in a cylinder.”” Hav-
ing discovered the monument, he took pains to reverse the disrepair into
which it had fallen. If true, Cicero had found the final resting place of
the greatest of Greek mathematicians. In attempting to rescue the site
from oblivion, Cicero not only paid homage to Archimedes but perhaps
atoned somewhat for the brutality of his murderous Roman ancestors.

One often hears of people who are ahead of their time. By this is
usually meant a man or woman who anticipates the rest of the world by
a decade or perhaps even a generation. But Archimedes was doing math-
ematics whose brilliance would be unmatched for centuries! Not until
the development of calculus in the latter years of the seventeenth cen-
tury did people advance the understanding of volumes and surface areas
of solids beyond its Archimedean foundation. It is certain that, regard-
less of what future glories await the discipline of mathematics, no one
will ever again be 2000 years ahead of his or her time.

We can do no better than to end with Voltaire’s fitting and quite
remarkable comment on the achievements of this great mathematician:
“There is more imagination in the head of Archimedes than in that of
Homer.”
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Epilogue

One legacy of Archimedes’ Measurement of a Circle was the quest for
ever more precise estimates of the critical constant we call . The impor-
tance of this ratio had been recognized long before Archimedes,
although it was he who first subjected it to a scientific scrutiny. One
interesting pre-Archimedean estimate can be inferred from a Biblical
quotation about a circular ‘“sea,” that is, a large container for holding
water: “Then He made the molten sea, ten cubits from brim to brim,
while a line of 30 cubits measured it around” (I Kings 7:23).

From this we derive the value r = ¢/D =30/10 = 3.00, an estimate
which, because of its great antiquity, is quite reasonable. (Of course,
here we have a bone to pick with those who regard the Bible as accurate
in all respects, since 3.00 seriously underestimates x.)

A better ancient estimate was that of the Egyptians. In the Rhind
papyrus, they used (4/3)* = 256/81 = 3.1604938 . . . as the ratio of Cto
D. These and other “pre-scientific”’ estimates represented the first phase
in the estimation of x. As we have seen, Archimedes initiated the second
phase. His geometric approach, employing the perimeters of inscribed
and/or circumscribed regular polygons, was the method of choice for
mathematicians until the mid-seventeenth century (yet another indica-
tion that Archimedes was ahead of his time).

Around A.p. 150 the noted astronomer and mathematician Claudius
Ptolemy of Alexandria provided an estimate for this ratio in his master-
piece, the Almagest. This extensive work was a compilation of astronom-
ical information, from the behavior of the sun and moon, to the motions
of the planets, to the nature of the fixed stars in the heavens. Obviously,
the precise measurements of celestial objects required a sophisticated
mathematical underpinning, and for this reason, early in the Almagest
Ptolemy developed his Table of Chords.

He began with a circle whose diameter was divided into 120 equal
parts. If each part has length p, then we can designate the diameter as
120p, as shown in Figure 4.10. For any central angle «, Ptolemy wanted
to find the length of chord AB subtended by this angle. For instance, the
chord of a 60° angle is just the length of the radius, which is 60p.

This was an easy one. Finding the chord of 42%° is far less simple.
But, using some clever reasoning and showing an Archimedean knack
for computation, Ptolemy generated precisely such a table for all angles
from %° up to 180° in half-degree increments.

Pertinent to our discussion, however, is the fact that he found the
chord of 1° to be (in modern decimal notation) 1.0472p. Thus, the
perimeter of a regular 360-gon inscribed in this circle is 360 times as
great, namely 376.992p. Although the idea of using regular polygons is
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clearly Archimedean, Ptolemy’s 360-sided figure furnished a much more
accurate estimate than his predecessor’s 96-gon. That is,

C _ perimeter of 360-gon  376.992p
r=—-=~E _ = = 3.1416
D diameter of circle 120p

In the centuries that followed, advances in the calculation of 7 cen-
tered in the non-Western cultures of China and India, cultures with bril-
liant mathematical histories of their own. Thus we find the Chinese sci-
entist Tsu Ch’ung-chih (430-501) using the estimate 355/113 =
3.14159292 . . . around A.D. 480, and the Hindu mathematician Bhaskara
(1114-ca. 1185) recommending 3927/1250 = 3.1416 for accurate cal-
culations around A.p. 1150.

When Europe finally emerged from the mathematical stagnation of
the Middle Ages, the pace of discovery accelerated. By the late sixteenth
century, with the work of such mathematicians as Simon Stevin (1548-
1620), the modern decimal system had been established, and with it
came easier, more accurate estimates of square roots. Thus, when the
gifted French mathematician Francois Viéte (1540-1603) tried his hand
at estimating = with Archimedes’ technique, he could use regular poly-
gons of 393,216 sides to get a value accurate to nine places. This
required him to follow Archimedes’ lead through the 96-gon, but then
to double the number of sides a dozen more times. Even Archimedes
would have withered under the constraints of his number system, but
the decimal notation gave Viéte the opening he needed. The basic
insight was still Archimedes’ but Viéte had better tools.

Early in the seventeenth century, a Dutch mathematician outdid all
predecessors by finding 7 correct to 35 places. His name was Ludolph
van Ceulen, and he devoted years of effort to the task. Like Viéte,
Ludolph combined the new decimal system with the old Archimedean
strategy, although rather than starting with a hexagon and doubling its
number of sides, Ludolph began with a square. By the time he was fin-
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ished, he was handling regular polygons with 2%—or roughly
4,610,000,000,000,000,000—sides! Needless to say, the perimeter of
such a polygon differs very little from the circumference of the circle in
which it is inscribed.

The classical method of approximating = had carried mathematicians
far. But later in the seventeenth century came a mathematical explosion
of epic proportions, one of whose advances at last supplanted Archime-
des’ approach and pushed the search for # into its third phase. In the
late 1660s, the young Isaac Newton applied his generalized binomial
theorem and newly invented method of fluxions—that is, calculus—to
get a very accurate estimate of = with relative ease; this is the great the-
orem dealt with in Chapter 7. By 1674, Newton's rival Gottfried Wilhelm
Leibniz had discovered that the series

1—%+%—%+%—Th+K—%+...

approaches the number /4 as we carry the calculations ever farther
along. Theoretically at least, we can extend the series of terms as far as
we choose in order to get ever more accurate approximations to =/4, and
consequently to = itself. It is important to note that the series we must
sum here is utterly predictable in its behavior; that is, no matter where
we are in the series, it is easy to determine the next term. Suddenly,
then, the matter of approximating = turned from the geometric problem
it had been with Archimedes’ regular polygons to a simple arithmetic
problem of adding and subtracting numerical terms. This was a major
change in perspective.

Actually, the plot thickened at this point, since Leibniz’s series, while
it did indeed approach the number 7 /4, did so very slowly. For instance,
even if we use the first 150 terms of the series, we get as an approxima-
tion of w only 3.1349 . . ., which is disappointingly inaccurate given the
number of computations involved. It is estimated that to get 100-place
accuracy with this series, one would need more than

100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

terms! So, while Leibniz’s series foretold the new, arithmetic approach
to estimating =, it obviously had little practical use.

The promise of infinite series was soon fulfilled as mathematicians
such as Abraham Sharp (1651-1742) and John Machin (1680-1751)
made clever modifications that generated much more rapidly converging
series. Using these adjustments, Sharp found = correct to 71 places in
1699, and Machin got 100 places seven years later. Moreover, their efforts
proved far easier than those which had occupied poor Ludolph for much
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of his life in squeezing out 35-place accuracy. It was clear that the series
approach had rendered the classical method obsolete.

Meanwhile there were developments on other fronts in mathemati-
cians’ attempts to understand this peculiar constant. Chief among these
was the 1767 proof by Johann Heinrich Lambert (1728-1777) that 7 is
an irrational number. We recall that the irrationals are those real num-
bers that cannot be written as the quotient of two integers—that is, the
irrationals are the numbers that are not fractions. It is fairly easy to show
that constants like\/2 or /3 are irrational, but it took until the eigh-
teenth century for Lambert to prove that = belonged on this list. His dis-
covery assumes particular importance when we recall that rational num-
bers have decimal expansions that either terminate or exhibit a repeating
pattern. For instance, the decimal for the rational number % is just .125.
Alternately, the decimal for the rational % never stops, but at least it
repeats in blocks of six places:

% = .142857142857142857142857 . . .

If # were rational, it too would have to exhibit one of these behav-
iors, and thus efforts to determine its decimal expansion would, after a
certain amount of time, essentially be complete. Lambert’s proof that =
belonged among the irrational numbers guaranteed that the computa-
tion of its decimal would forever remain unfinished business.

As if this irrationality were not already bad enough, Ferdinand Lin-
demann proved in 1882 that = is actually transcendental, as mentioned
in Chapter 1. Not only did this discovery settle the issue of squaring the
circle, but it meant that 7 could not emerge as any sort of elementary
expression involving square roots, cube roots, and so on, of rational
numbers. The results of Lambert and Lindemann showed that 7 is not
among the “nice” numbers easily accessible to mathematical analysis.
Yetthe results of Archimedes from 225 B.c. had shown just as clearly that
« was one of the most important numbers of all.

This history of = introduces one of the outstanding mathematicians
of this century, Srinivasa Ramanujan (1887-1920). Born in India to a
family of limited means, Ramanujan enjoyed none of the benefits of for-
mal mathematical training. He was largely self-taught, and this from just
a few textbooks. Ramanujan’s absorption with mathematics cost him
dearly in his mastery of other subjects, and his formal education ended
when he was unable to pass the requisite examinations in neglected
courses. By 1912, he was reduced to a clerical job in Madras, supporting
himself and his wife on a mere 30 pounds per year. It would have been
very easy to write him off as a failure.

Yet, despite such obstacles, this isolated genius was doing mathe-
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matical research of great originality and depth. After some urging, he
wrote up a sampler of his discoveries and mailed them to three of Eng-
land’s foremost mathematicians. Two of them returned Ramanujan’s
unsolicited letter. Apparently they felt they had more pressing things to
do than to respond to an unknown Indian clerk.

The third, G. H. Hardy of Cambridge University, may have been
tempted to follow the same course when he opened his morning mail
on January 16, 1913. Ramanujan’s communication, written in poor
English and containing over 100 strange formulas without proofs of any
kind, seemed to be the disordered ramblings of a crackpot from halfway
around the world. Hardy put the letter aside.

But, as the story goes, something about those mathematical formulas
haunted him all that day. Many of the results were unlike anything Hardy
had ever seen, and Hardy was among the finest mathematicians in the
world. Gradually, it dawned upon him that these formulas . . . must be
true, because if they were not true, no one would have had the imagi-
nation to invent them.” Indeed, when he returned to his rooms and
reexamined the morning’s document, Hardy realized that this was the
work of an enormous mathematical talent.

Thus began the process of bringing Ramanujan to England. It was
complicated by a staunch religious upbringing that placed restrictions
on his mode of travel, his diet, and so on. But these problems were even-
tually overcome, and Ramanujan arrived at Cambridge in 1914.

There followed an extraordinary half-decade of collaboration
between Ramanujan and Hardy—the latter being a sophisticated, urbane
Englishman possessing the best mathematical training the world could
offer; the former being a “‘raw talent” of incredible power who nonethe-
less had huge gaps in his mathematical knowledge. Sometimes Hardy
had to instruct his young companion even as he would an ordinary
undergraduate. At other times Ramanujan would astound him with
never-before-seen mathematical results.

Among the formulas that Ramanujan devised were many that gave
rapid, highly accurate approximations to . Some of these appeared in
an important 1914 paper; others were scrawled in his private notebooks
(documents only now being made generally available to the world’s
eager mathematical community). Even the simplest of these formulas
would carry us too far afield, but suffice it to say that his insights have
opened lines of investigation into far more efficient estimates of .

Unfortunately, Ramanujan’s career, so improbable in its beginnings,
came to a premature end. Far from home, in Cambridge during World
War I, Ramanujan suffered a physical breakdown. Some attributed his
decline to disease; others saw the cause as a serious vitamin deficiency
brought on by his severe dietary restrictions. In the hope of recovery, he
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returned to India in 1919, but the familiarity of home was unable to
arrest his decline. On April 26, 1920, Ramanujan died, and the world
lost, at age 32, one of its mathematical legends.

We now rapidly bring our story to its modern conclusion by citing
the amazing calculations of the Englishman William Shanks (1812-
1882), who determined x to 707 places in 1873. Shanks had used the
series approach of Machin to get this startling level of accuracy, which
stood as a standard for the next 74 years. But then, in 1946, his country-
man D. F. Ferguson made the startling discovery that Shanks had erred
after the 527th place of his great computation. Ferguson then kindly cor-
rected the mistake and obtained = to 710 places. For those with less of
an appetite for calculations, it is difficult to imagine undertaking a check
upon a 707-place number; more incredible is the persistence that would
keep one going after finding no errors through 100 places, then 200
places, then 500 places! Yet Ferguson'’s inexplicable perseverance did in
fact pay off.

In early 1947, the American J. W. Wrench added his own achieve-
ment to this history by publishing = to 808 places. This seemed to be a
brilliant new triumph—until the indefatigable Ferguson began checking
this one too. Sure enough, he found a mistake in the 723rd place of
Wrench’s computation. The two men then joined forces and a year later
provided = correct to 808 places.

At this point, the tale enters its fourth and final phase. We have seen
how people first estimated = by a sort of “rule of thumb”’; next, Archi-
medes introduced the method of inscribed and circumscribed polygons,
which prevailed until the coming of calculus when arithmetical tech-
niques involving infinite series took over. Finally, in 1949 the computer
fundamentally revolutionized the calculations. In that year, the Army’s
ENIAC computer found = to 2037 places. It should be stressed that this
was, by modern standards, an extremely primitive machine, one which
filled rooms with wires and vacuum tubes and cranked out its results
with excruciating slowness. Yet even this quaint old device managed to
obliterate all previous human calculations, in one leap extending the
decimal estimate by two-and-a-half times beyond 22 centuries of human
achievement. Not even D. F. Ferguson was going to find an error in this
one. Further, as computer technology improved, the number of decimal
places grew at an unbelievable pace. By 1959, there were over 16,000
places; by 1966, it had risen to a quarter of a million places, and by the
late 1980s, supercomputers had pushed the expansion to somewhere
over half a billion places, give or take a few million.

Yet our fragile human egos need not be too severely damaged. For,
while the computers are faster at calculations than any person can hope
to be, it was mathematicians who programmed the machine and thereby
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pointed it in the proper direction. The story of = is the story of a human,
not a mechanical, triumph. And even in the late twentieth century, we
must not forget that this journey had its mathematical beginnings in the
short treatise Measurement of a Circle by the unsurpassed Archimedes
of Syracuse.




